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RESUMO

HAAN, I. Ontologias Gênicas Construídas por Redes de Interação. 2021. 26p.
Monografia (Trabalho de Conclusão de Curso) - Nome da Unidade USP, Universidade de
São Paulo, São Carlos, 2021.

O presente trabalho busca fazer uma revisão da literatura no que tange a utilização de
métodos para extração de ontologias no contexto da biologia a partir de redes de Dados.
O trabalho inclui progresssão histórica, detalhamento dos métodos utilizados, resultado
comparativo sobre os métodos, o estado da arte e promessas para o futuro.
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1 INTRODUÇÃO

1.1 O que são ontologias?

Para a filosofia, ontologias são o estudo dos tipos de coisas que existem. Não
obstante, ao longo do tempo, a palavra recebeu um segundo significado, mais ou menos
relacionado ao original. Ontologias, no sentido tratado nesse trabalho, derivado da área
de inteligência artificial, são vocabulários destinados à representação do conhecimento
disponível sobre determinado assunto (1).

Guarino (1998) tenta trazer uma definição para esse novo uso da palavra:

"[...] ontologia se refere a um artefato constituído por um vocabulário usado para
descrever uma certa realidade, mais um conjunto de fatos explícitos e aceitos que dizem
respeito ao sentido pretendido para as palavras do vocabulário. Este conjunto de fatos tem
a forma da teoria da lógica de primeira ordem, onde as palavras do vocabulário aparecem
como predicados unários ou binários."(2)

Entretanto, essa definição, mesmo trazendo diversos aspectos realmente presentes
em ontologias, não é consensual. Por conseguinte, para o correto entendimento da essência
do termo, faz-se necessário exemplificar e elencar características comuns de ontologias. (3)

Os componentes básicos de uma ontologia são classes (conceitos do domínio em
questão), juntamente com suas relações taxonômicas e propriedades. Quando adicionadas
instâncias a essas classes cria-se uma base de conhecimento. (4)

Um exemplo concreto pode ser facilmente visualizado com uma ontologia hipotética
criada para representar o conhecimento disponível sobre vinhos. Classes poderiam ser
branco, espumante, rosé, tinto, Cabernet Sauvignon, Chardonnay etc., as relações entre as
classes são, por exemplo, Cabernet Sauvignon é um tipo de branco que, por sua vez é um
tipo de da superclasse vinho.

Já propriedades são, por exemplo, produzido com uvas verdes e baixa quantidade de
polifenóis, características da classe branco. Essas propriedades são utilizadas, então, para
instanciar exemplares, garrafas individuais de vinho, formando uma base de conhecimento.

Através dessa exemplificação fica claro o poder de um constructo como esse,
ontologias conseguem sistematizar, de maneira clara e eficiente, conhecimentos das mais
diversas áreas; linguística, ciências da computação e biologia são apenas alguns exemplos
dos muitos domínios que se utilizam desse conceito.
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1.2 A GO

Com o advento do sequenciamento de genomas inteiros se fez necessária uma
ontologia que captasse todo o conhecimento disponível sobre os genes dos organismos. Tal
necessidade é não apenas organizacional, como também fruto do desafio de comparar e
transferir anotações entre diferentes espécies. Para tal, em 2000 criou-se a Gene Ontology
(GO).(5)

A GO é, na realidade, um conjunto de três ontologias distintas que contém termos
relacionados a processo biológico, componente celular e função molecular. A primeira
carrega termos como DNA repair (reparo de DNA) e signal transduction (transdução de
sinal). Já a ontologia de componente celular traz classes como ribosome (ribossomo) e
mitochondrion (mitocôndria). Por fim, a GO de função molecular contém termos como
adenylate cyclase activity (atividade de adenilato ciclase) e transporter activity (atividade
de transporte).(5) (6)

O objetivo da iniciativa é produzir um vocabulário estruturado, bem definido e
comum para descrever os papéis dos genes e produtos gênicos de diversos organismos.
Para esse fim, criou-se uma estrutura padrão que a GO deve respeitar. As ontologias são
estruturadas como grafos acíclicos dirigidos (DAG, do inglês Directed Acyclic Graph), ou
seja, um grafo dirigido no qual, caminhando no sentido das ligações, é impossível sair de
um vértice e voltar para ele fechando um ciclo. No grafo os termos são respresentados por
nós e as relações entre eles como arestas.(5) (6)

Os termos presentes na GO (com excessão dos termos raiz) possuem uma relação
de is a (é um) com alguma subclasse, por exemplo, glucose transport is a monosaccharide
transport (transporte de glicose é um transporte de açúcar). Porém, além dela, outras
relações são frequentemente empregadas na ontologia, como part of (parte de), has part
(tem parte), regulates (regula), positively regulates (regula positivamente) e negatively
regulates (regula negativamente).(6)

Entretanto, o que começou como um projeto destinado principalmente para fins
anotacionais hoje já representa muito mais, ela é essencial, seja para um biólogo realizando
trabalho de base em um aspecto específico de um único organismo até para físicos e
geneticistas que se propõem a compreender polimorfismos genéticos humanos, além de
servir como padrão ouro para medir o sucesso de métodos de bioinformática.(7) Além
disso, ela já serve de base para iniciativas muito além do que o imaginado inicialmente,
como um modelo de aprendizado profundo capaz de modelar com precisão o crescimento
celular. (8)
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1.3 A NeXO

Mesmo com a GO crescendo vertiginosamente em importância, em meados de 2010
ela enfrentava sérios desafios relativos a anotação. Nessa época, ela crescia vertiginosamente
também em tamanho e complexidade, já apresentando mais de 30000 termos e 60000
relações entre termos, com genes anotados de mais de 80 espécies.(9) (10)

Além de problemas inatos da subjetividade humana na anotação, os quais podem
ser parcialmente contornados com padrões estritos nessa tarefa, as ontologias encontravam
dificuldade em traduzir novas descobertas de domínio específico para a relação de termos
da GO, produzindo viés em favor de termos mais bem estudados. (9) (10)

Tendo esses problemas em vista, imaginou-se que uma possível solução seria inferir
ontologias a partir de dados experimentais. A ideia era inferir uma hierarquia entre clusters
de redes de interação que seja análoga, em alguma escala, à GO.(10)

Em virtude de resultados iniciais que demonstravam maior densidade de interação
gênica presentes dentro de um mesmo termo da GO em quatro tipos de redes de interações,
sendo elas físicas proteína-proteína, gênicas (epitasia e letalidade sintética), co-expressão
gênica e interação funcional (YestNet), desenvolveu-se um método para montar ontologias
a partir de redes biológicas e ele foi batizado de Network Extracted Ontology (NeXO). (10)

O procedimento começa com o emprego de um método probabilístico de detecção
de comunidades originalmente desenvolvido para a predição de relações ausentes em
uma rede. Tal método, explicado com maior detalhamento posteriormente, constrói uma
árvore binária que maximiza as chances de recriação de todas as redes de interação
empregadas. Como elas presumidamente possuem padrões de interação que refletem as
relações hierárquicas intrínsecas da células, espera-se que esse dendograma também o faça.
Entretanto, uma árvore binária é apenas uma aproximação das relações hierárquicas entre
genes, não possuindo a capacidade de refletir a real complexidade destas. (10) (11) (12)

O problema é que um dendograma impõe a restrição artificial de que todos os
termos (com excessão da raiz e nós terminais) possuam extamente dois termos mais
específicos abaixo dele e um mais geral acima, o que não reflete a realidade celular, na qual
um processo pode ter mais de dois componentes envolvidos e um mesmo componente pode
participar de mais de um processo, realidade bem representada pela GO. Para transformar
essa primeira aproximação em algo mais realista, procuram-se por novas ligações que
possam ser criadas na árvore binária para aumentar a probabilidade de reconstrução das
redes.(10)

Nesse estágio, cada termo da ontologia possui apenas uma anotação numérica, a qual,
sem uma análise, não significa nada. Para completar a ontologia os autores desenvolveram
um algoritmo de alinhamento de ontologias baseado em métodos derivados das ciências
congnitivas e da computação que faz o match entre termos baseado em semelhança entre
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instâncias e posicionamento na hierarquia. Os objetivos dessa etapa são três: transferência
de termos presentes na GO, identificação de termos não presentes na GO (o que viria a ser
um dos mais importantes resultados conseguidos) e identificação de relações conflitantes
entre termos.(10)

Utilizando essa metodologia criou-se uma NeXO de levedura (Figura 1). Alinhando
ela com as ontologias da GO para a espécie, pôde-se reconstruir 60% da ontologia de
componentes celulares e ao redor de 25% das outras duas, com termos que possuem bom
suporte nas redes apresentando melhor alinhamento, o que sugere que, com uma melhora
nos dados experimentais, é possível melhorar a ontologia gerada, o que foi testado pelos
autores e confirmado. (10)

Figura 1 – NeXO

Fonte: Estrutura retirada de http://nexontology.org/ e representada através do Cytoscape.

Dessa forma, a partir da NeXO pôde-se saltar do uso de ontologias para análise de
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dados para a utilização de dados na criação e avaliação de ontologias. Um salto, ainda em
curso, que pode ter consequências profundas na forma de se fazer biologia.(7) (10) (13)

1.4 CliXO

Motivados pelos resultados promissores da NeXO os autores consideraram diversos
métodos de clusterização hierárquica que poderiam ser utilizados para a reconstrução
da GO e possivelmente trariam resultados melhores. Os principais pontos considerados
foram a possibilidade da utilização de valores discretos nas redes de interação, uma vez
que na NeXO foram utilizados thresholds para a transformação de redes ponderadas em
não ponderadas, pela impossibilidade do uso das primeiras nesse método, o que resulta em
perda de informação; e criação de DAGs com relações de parentesco múltiplas permitidas
desde um primeiro momento, o que poderia gerar relações mais precisas.(13)

O único algoritmo encontrado pelos autores que realizaria a tarefa desejada é o
LocalFitness, esse método cria clusters em algum nível da hierarquia por otimização de
uma função de fitness para cada um dos possíveis clusters sobrepostos contruídos a partir
de vários nós. A função fitness inclui um parâmetro que é ajustado para encontrar clusters
nos múltiplos níveis, as partições do grafo que são robustas, ou seja, estáveis em um
intervalo considerável do parâmetro, são utilizadas. (13)

Além do LocalFitness também foi apresentado um novo método, denominado
Clique Extracted Ontology (CliXO). O método, explicado em detalhes na seção 2.3 é
baseado no conceito de cliques, derivado da teoria de grafos. Além de atingir uma imensa
precisão na reconstrução da GO utilizando de similaridade semântica (> 98% de termos
identicamente alinhados) como prova de conceito, o método performa melhor que outros
algoritmos de clusterização e apresenta resultados similares aos da NeXO no que tange a
reconstrução da GO através de redes de interação. O método apresenta, ainda, uma forma
explícita de se lidar com o ruído, um dos problemas fundamentais da tarefa. (13)
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2 MÉTODOS

2.1 Grafos

Um grafo é constituído por um conjunto de nós (ou vértices) e um conjunto de
conexões (ou arestas). Um grafo é dito dirigido se suas conexões apresentam direcionamento,
ou seja, podem ser percorridas em apenas um sentido e denominado não dirigido se podem
ser percorridas nos dois. Um grafo dirigido é dito acíclico se, partindo de um nó e
caminhando no sentido das ligações é impossível voltar para o mesmo nó, grafos dirigidos
acíclicos são abreviados como DAG (Figura 2).(14)

Figura 2 – Exemplos de grafos: (A) um grafo não dirigido; (B) um grafo dirigido; (c) um
grafo dirigido acíclico

2.2 Construção da NeXO

Como dito de antemão na seção 1.3 o método para a construção da NeXO baseia-se
em três etapas, são elas:

1. Criação de uma árvore binária através de um método probabilístico de clusterização
hierárquica

2. Adição de relações entre termos para permitir relações múltiplas de parentesco

3. Alinhamento da ontologia gerada com a GO

2.2.1 Criação da Árvore Binária

O método para a criação da árvore binária possui uma grande complexidade,
tendo isso em vista, faz-se adequada uma primeira apresentação dele em um análogo não
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hierárquico. A explicação aqui contida é inspirada no artigo no qual a metodologia foi
proposta (12) e fundida com os detalhes particulares da NeXO (10).

2.2.1.1 Um modelo plano

Considera-se um grafo G, definido por um conjunto de vértices (V) e arestas (E, do
inglês edges). Um modelo plano M define como esses vértices se juntam em grupos, os quais
são denotados [C1, C2, ..., Ck] para um modelo com K grupos, cada vértice é associado a
um e apenas um grupo, os quais são, portanto, disjuntos. Índices i,j são utilizados para
grupos, enquanto u e v para vértices.

A contagem de arestas entre grupos e dentro de um mesmo grupo pode ser
contabilizada, respectivamente, por eij = ∑

u∈i,v∈j euv e eii = ∑
u<v∈i euv, sendo euv 1 para

um vértice entre u e v e 0 para a ausência (presença de um buraco). Já a contagem de
pares de vértices totais é, na mesma ordem, tij = ninj e tii = ni(ni − 1)/2, sendo ni o
número total de vértices no grupo i. Por conseguinte, a contagem de buracos entre i e j,
iguais ou diferentes, é hij = tij − eij.

Para um dado par de grupos i e j, as arestas eij são modeladas a parir de tij ensaios
de Bernoulli com parâmetro θij. A probabilidade das arestas observadas, condicionadas a
tij é(15):

P (θij) = θ
eij

ij (1− θij)hij (2.1)

O valor de maior verossimilhança (PML
ij ) é obtido pela utilização da estimativa de

máxima verossimilhança de θij , θ̂ = eij/tij , com uma probabilidade a priori (prior) uniforme.
Uma probabilidade verdadeiramente bayesiana (P F B

ij ) é obtida através do processo de
marginalização, marginalizando sobre o parâmetro θij, novamente com um prior uniforme
(15):

PML
ij ≡ e

eij

ij h
hij

ij /t
tij
ij

P F B
ij ≡ Beta(eij + 1, hij + 1)

(2.2)

Dessa forma, para um modelo plano, comK(K+1)/2 parâmetros, a verossimilhança
e probabilidade bayesiana são(15):

L(M) =
∏
i≤j

PML
ij

P (M) =
∏
i≤j

P F B
ij

(2.3)
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2.2.1.2 Generalização Para um Modelo Hierárquico

Um grafo randômico hierárquico (HRG, do inglês hierarchical random graph), é um
dendograma em que cada nó tem uma probabilidade associada (pr), a qual corresponde
com a probabilidade de um vértice entre as suas subárvores filhas estarem ligados na
rede sendo representada. Esse modelo permite a recriação de uma rede com propriedades
topológicas relacionadas a original, o que da margem para utilizar uma abordagem de
máxima verossimilhança para detectar a estrutura hierárquica. (11)

Essa abordagem pode ser utilizada para extender a noção do modelo plano M
(subseção 2.2.1.1) para um modelo hierárquico T. Utilizando o mesmo modelo probabilístico
introduzido naquela seção, define-se ec1,c2 e hc1,c2 como sendo, respectivamente, o número
de arestas e buracos entre as subárvores c1 e c2 de um nó. De maneira similar à Equação 2.3,
fazendo M ≡ T , a verossimilhança L(T ) de um dado modelo T e a probabilidade P (T ) da
rede dado o modelo são:

L(T ) =
∏

c1,c2∈nós(T )
PML

c1,c2

P (T ) =
∏

c1,c2∈nós(T )
P F B

c1,c2

(2.4)

Onde PML
c1,c2 = e

ec1,c2
c1,c2 h

hc1,c2
c1,c2 /t

tc1,c2
c1,c2 e P F B

c1,c2 = Beta(ec1,c2 + 1, hc1,c2 + 1). Sendo Beta a
função de mesmo nome, pela definição dela fica claro que a probabilidade P (M) da rede
dado o modelo é maximizada se as relações entre os nós de C1 e C2 forem coerentes, isso
é, forem predominantemente buracos ou arestas.

Para um conjunto de redes R a serem representadas por um único modelo T, P (T )
e R(T ) são dados pelo produto das probabilidades e verossimilhanças das r ∈ R redes
individuais:

P (T ) =
∏
r∈R

Pr(T )

L(T ) =
∏
r∈R

Lr(T )
(2.5)

Fazendo uma otimização de máxima verossimilhança sobre o conjunto de dados
a serem utilizados para a ciação da ontologia, encontra-se uma árvore binária, a qual é
utilizada para uma primeira representação hierárquica da rede.

2.2.2 Generalização para relações múltiplas de parentesco

Embora essa árvore binária sirva para uma primeira representação da rede, ela não
da conta de toda a complexidade intrínseca da estrutura hierárquica dos genes (seção 1.3).
Dessa forma, modifica-se o modelo T para permitir relações de parentesco múltiplas.
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Primeiramente, calcula-se o quanto cada nó de T contribui para a pontuação
geral do modelo, nós que não contribuem são removidos e seu nó parental é conectado
diretamente a cada um de seus nós filhos. A contribuição de um nó p é calculada pela
razão entre a probabilidade dos dados sob a árvore original e sob uma árvore atualizada,
na qual p é substituído por cada um de seus filhos (c1, c2, ..., cn):

λc1,c2,...,cn =
K∏

s=1

Pp,s

Pc1,sPc2,s · · · Pcn,s

(2.6)

Onde s representa cada um dos K nós irmãos de p e as probabilidades são calculadas
como descrito anteriormente (Equação 2.4). O nó p é removido se tanto λc1,c2,...,cn < 1
como a densidade de interação (Dij ≡ eij/tij) entre c1, c2, ..., cn não for maior que entre p
e seus irmãos. Com a remoção de nós, são criadas relações de parentesco múltiplo.

Além disso, a fim de permitir a existência de nós com mais de um nó parental, é
montada uma heurística. Começando das folhas, consideram-se todos os pares de nós (c,p)
tais que o número de genes associados a c é menor do que o de associados a p. O nó p é
identificado como um parente adicional de c se:

1. Os nós c e p não estão no mesmo caminho.

2. O padrão de interações entre os genes associados e a c e associados a p é denso
(epc/tpc > 0.3).

3. O conjunto de genes associados a p unidos com os associados a c formam um cluster
denso (ep∪c,p∪c/tp∪c,p∪c ≥ 1

2ep,p/tp,p)

2.2.3 Alinhamento de Ontologias

Como citado anteriormente (seção 1.3), até essa etapa os termos da NeXO são
apenas tags, os quais só possuirão um real significado caso a estrutura hierárquica seja
analisada. O alinhamento de ontologias permite não apenas aproveitar a anotação existente
da GO para essa tarefa como também comparar as ontologias e encontrar possíveis erros
na GO. A técnica de alinhamento utilizada para a confecção da NeXO é inspirada por um
método denominado ASMOV34, criado para o alinhamento de ontologias semânticas. (16)

Dado duas ontologias, O1 com n1 termos e 02 com n2 temos, um alinhamento de
ontologias A é um mapeamento de termos entre as ontologias de forma que cada termo em
01 é mapeado para no máximo um termo em 02 e vice-versa. O mapeamento entre termos
no alinhamento é avaliado usando uma função pontuação que considera a similaridade
dos conjuntos de genes associados aos termos (similaridade intrínseca entre termos) e a
posição relativa dos termos na hierarquia (similaridade relacional).
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O alinhamento é um processo iterativo, com cada iteração k produzindo um
alinhamento Ak. O processo começa com o cálculo de uma matriz Tk de dimensões n1×n2,
onde 0 ≤ Tk(i, j) ≤ 1 representa a similaridade do termo i ∈ O1 com j ∈ O2. Tk é
contabilizado da seguinte maneira:

Tk(i, j) =

 I(i, j), para k = 0

0.75I(i, j) + 0.25Rk(i, j), para k > 0
(2.7)

Onde I(i, j), a similaridade intrínseca, é precomputada, uma vez que não depende
de k, e é dada pelo Índice Jaccard:

I(i, j) ≡ xi ∩ xj

xi ∪ xj

(2.8)

Já Rk(i, j), a similaridade relacional, é calculada pela semelhança entre os conjuntos
de termos que são parentes de i e j (Pi, Pj) e entre os que são filhos dos mesmos (Ci, Cj):

Rk(i, j) =


S(Pi, Pj) + S(Ci, Cj)

2 , para nós internos

S(Ci, Cj), para raiz
(2.9)

Onde as similaridades (s) entre conjuntos são calculadas utilizando Ak−1 da seguinte
forma:

S(X, Y ) = SOS

|X|+ |Y | − SOS
SOS =

∑
(x,y)∈L

Tk−1(x, y)
(2.10)

L é o alinhamento local de X com Y , determinado pela escolha de pares (x, y) com
o maior Tk−1, assegurando-se que nenhum elemento de X ou Y participe em mais de um
par. Tendo em vista o que foi apresentado nessa seção, o alinhamento Ak é encontrado
através do seguinte algoritmo míope:

1. Inicializar o Ak sem correspondência entre termos; Calcular Tk; inicializar L como
uma lista ordenada de pares de termos (i,j) em ordem decrescente de Tk(i, j)

2. Selecionar o primeiro par (i, j) de L

3. Confirmar se (i, j) conflita com algum dos pares já contidos em Ak. Dois pares, (i,j)
e (i’,j’), conflitam se:

(a) i = i′ ∨ j = j′
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(b) ((i é descendente de i′) ∧ (j é ancestral de j′))∨
((i é ancestral de i′) ∧ (j é descendente de j′))

4. Se não houver conflito, adicionar (i, j) a Ak

5. Se todos os termos de O1 ou O2 estiverem mapeados, ou se todos os pares tiverem
uma similaridade abaixo de um valor limite (definido como 0.01), então Ak está
completo. Senão, retornar para o passo 2.

6. Se Ak = Ai, i ∈ (0, ..., k), terminar, caso contrário, reiniciar para a próxima iteração
(k = k + 1)

Com o fim do algoritmo, a pontuação (Sk(t)) de cada um dos termos alinhados é
calculada como:

Sk(t) =

Tk(t, Ak(t)), para termos mapeados por Ak

0, para termos não mapeados por Ak

(2.11)

A taxa de alinhamentos falsos é calculada como:

FDR(t) =
1
n

∑n
i=1 NRi

(t)
N(t) (2.12)

Onde NRi
é o número de termos em um alinnhamento feito por permutação

randômica que possuem uma pontuação de alinhamento ≥ t. Um limiar de pontuação de
alinhamento mínima para o mesmo valer é 0.1 e a mesma é reduzida com o tamanho dos
grupos de forma a manter FDR < 10% para todos os tamanhos de grupos.

2.3 Construção da CliXO

2.3.1 Cliques

A construção da CliXO é baseada em um conceito da teoria de grafos denominado
clique. Um clique de um grafo não orientado U é definido como um subconjunto de seus
vértices em que todos os pares estão conectados entre sí. Um clique é dito maximal quando
é impossível adicionar outro vértice e encontrar um clique maior, ou seja, o clique maximal
não é subconjunto de nenhum outro clique.

2.3.2 Definições

A metodologia e explicação sobre ela foram baseadas no artigo em que a CliXO foi
apresentada (13).

Define-se o grafo que representa a ontologia como um DAG ponderado G =
[T,N,E,w, r] com as seguintes propriedades:
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1. G tem dois tipos de nós, terminais (T ; sem nós filhos) e não terminais (N), os quais
também são denominados termos. G tem uma única raiz (r), a partir da qual todos
os nós podem ser alcançados.

2. |G| := número de nós em N

3. Entre qualquer par de nós (a, b) ∈ T , w(a, b) denota o menor caminho entre a e b
em G.

4. Propriedade Ultramétrica: um nó u ∈ N tem distância constante (w(u)) para
todos os seus descendentes terminais (L(u)).

5. Propriedade de Testemunha: para um nó u ∈ N , e um nó v(∈ T∧ /∈ L(u)),
∃b ∈ L(u)|w(a, b) > 2w(u).

6. ∀(a, b) ∈ T∃ um menor ancestral comum (lca(a, b)) |(w(a, b) = 2w(lca(a, b)))

2.3.3 Formalização do problema

Para otimizar-se a resolução de um problema, faz-se útil primeiro entender com
detalhes do que se trata o problema a ser resolvido. Com a seguinte formalização, o
entendimento sobre o algoritmo e sua motivação é facilitada.

2.3.3.1 Caso Perfeito

Entrada - Um conjunto de nós terminais T e uma matriz M de distância entre os
pares de nós, (uma matriz similaridade pode ser convertida para uma distância fazendo
M =constante - Msimilaridade)

Saída - G, com T como o conjunto de nós terminais e ∀(a, b) ∈ T,w(a, b) = M(a, b)

Como raramente as distâncias de entrada satisfazem as distâncias da ontologia
perfeitamente, no caso imperfeito calcula-se a ontologia que melhor representa M

2.3.3.2 Caso imperfeito

Entrada - Um conjunto de nós terminais T, uma matriz M de distância entre os
pares de nós e um parâmetro de ruído α fornecido pelo usuário.

Saída - G, com T como o conjunto de nós terminais que maximiza |G| enquanto
satifaz as seguintes condições:

1. ∀(a, b) ∈ T,w(a, b) ≥M(a, b)

2. ∀u ∈ N, ∀a(∈ T∧ /∈ L(u)),∃b ∈ L(u)|(M(a, b) > 2w(u) + α)

3. ∀u ∈ N, ∃(a, b) ∈ L(u)|2w(u) + α < w(v),∀v com (a, b) ∈ L(v), v 6= u

4. ∀u ∈ N, (a, b) ∈ L(u), w(u) = 2max(M(a, b))
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2.3.4 O Algoritmo CliXO

2.3.4.1 Caso perfeito

Considera-se um grafo U não dirigido, com nós ∈ T e sem arestas. Sendo S o
ordenamento de todos os pares de nós (a,b) em ordem decrescente de distância (M(a,b)),
encontra-se a ontologia pela seguinte heurística:

Input :Ordenamento dos pares de nós (S)
Output :Nós não terminais de G (CG)
Cg ← {}
while S 6= {} do

(a, b)← S[0]
t←M(a, b)
while M(a, b) = t do

(a, b)← Pop(S)
Adicionar aresta (a,b) a U

end
Ccur ← conjunto de cliques maximais em U
CG ← (Cg ∪ Ccur)

end

A cada saída, os cliques maximais entre os nós terminais correspondem a um nó
sendo criado no grafo da ontologia, gerando a hierarquia. (Figura 3,Figura 4)

Figura 3 – Exemplo de matriz de distâncias

2.3.4.2 Caso imperfeito

No caso imperfeito a única mudança no algoritmo é, ao invés de adicionar todos os
cliques de Ccur para Cg a cada vez que um novo valor de threshold é atingido, adiciona-se
a CG apenas cliques C ∈ Ccur para os quais maxa,b∈C(M(a, b)) < t− α.

O algorimo, construído dessa maneira, consegue distinguir perfeitamente entre
sinal e ruído quando α < s ∧ α > n(G), sendo s a menor distância entre qualquer par
de nós conectados na ontologia e n(g) determinado pelo seguinte procedimento. Para



19

Figura 4 – Exemplo de construção da hierarquia pelo método CliXO a partir da matriz
da Figura 3; acima as iterações de U e abaixo as iterações da hierarquia

Fonte: Elaborado pelo autor a partir do NetworkX.

cada termo u ∈ G, ordena-se pelo valor todos os M(a, b), onde a, b ∈ u, n(u), para um
nó não terminal u ∈ N , é a diferença máxima entre valores adjacentes na lista, por fim,
n(G) = maxu∈Nn(u).

Não é possível determinar n(G) sem saber a verdadeira estrutura da ontologia,
entretanto é um conceito útil para entender o papel de α. n(G) pode ser estimado, contudo,
como 2x o erro padrão das distâncias medidas e α pode ser estimado com esse valor.

Nem sempre é possível definir α de tal forma que n(G) < α < s, porque às vezes
n(G) > s. Nesse caso, se α < n(G), criar-se-á termos estranhos que são um subconjunto
de termos ’reais’. Por outro lado, se α > s, então qualquer nó filho que for próximo a seu
nó parental (2(w(p)− w(c)) < α)) não será incluído na ontologia. Uma estratégia para
definir o valor de α de maneira satisfatória é analisar uma parte conhecida da ontologia, se
muitos termos estranhos estão sendo criados, então provavelmente α está baixo, se vários
termos estão colapsados, então α está alto.
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2.3.4.3 Falsos negativos

Em dados experimentais conexões faltando (medições em que M(a, b) << w(a, b)
na ontologia ’real’) são uma realidade. Para cada falso negativo em um termo de tamanho
k, dois termos de tamanho k-1 são criados na ontologia gerada para CliXO. Essa realidade
gera uma ontologia a qual possui muito mais termos do que a ’real’.

Para se contornar isso, desenvolve-se um método em que um parâmetro definido
pelo usuário 0 < β ≤ 1 dita como a matriz M deve ser editada para corrigir falsos
negativos. Dois cliques Ci e Cj são considerados altamente sobrepostos pelo algoritmo se
∀a ∈ Ci ∪ Cj,

|N(a)∩(Ci∪Cj)|
|Ci∪Cj |−1 ≥ β.

Modifica-se o algoritmo CliXO, de forma a, antes de um clique maximal Ci ∈
Ccur ser adicionado a CG, averiguar-se todos os outros Cj ∈ Ccur em busca de alta
sobreposição com Ci. Para qualquer Cj altamente sobreposto com Ci, procura-se outro
Ck ∈ Ccur que seja altamente sobreposto com Cj. Para todos os pares de cliques Ci, Cj,
M(a, b) ← max(w(Ci), w(Cj)) para todos os (a, b) ∈ (Ci ∪ Cj). Adiciona-se então as
conexões ajustadas em U e atualiza-se Ccur.

2.3.4.4 Alinhamento de Ontologias

Assim como na NeXO a ontologia precisa ser alinhada com a GO. Isso é feito pela
mesma metodologia(subseção 2.2.3).
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3 RESULTADOS E DISCUSSÃO

No artigo em que a CliXO foi proposta, os autores, utilizando similaridade semântica
de Resnik (17) extraída da GO de processo biológico (GO BP), geraram ontologias a partir
de diferentes métodos, e averiguaram o quanto elas foram capazes de reconstruir da GO.
A CliXO reconstruiu > 98% dos termos da GO BP identicamente e 100% dos termos
construídos foram alinhados. Já o algoritmo de Local Fitness alinhou-se a 5% dos termos e
obteve 30% de alinhamento nos termos criados. Os métodos hierárquicos testados (single
linkage, complete linkage, ward, UPGMA e WPGMA) reconstroem 35-80% dos termos
da GO ( 20% de reconstrução de termos identicos), entretanto os mesmos são forçados,
por construção, a criar uma árvore binária, danificando sua precisão (<35%). Por fim, o
método NeXO foi utilizado para reconstrução da GO BP com o emprego de thresholds, o
mesmo reconstruiu 40% da Ontologia e obteve precisão de 70% nos termos gerados. (13)

No intuito de avalia-los no que tange a reconstrução da GO a partir de dados,
os autores submeteram diferentes métodos aos mesmos bancos de dados de levedura
(interações gênicas, perfil de expressões gênicas e YeastNet v3). Através dos resultados, os
autores concluíram que os métodos NeXO e CliXO possuem uma clara vantagem sobre os
outros, apresentando resultados similares quando com parâmetros otimizados. Todavia, o
método NeXO demonstrou ser muito mais sensível a parâmetros, com pequenas variações
da threshold provocando grandes perdas, enquanto o método CliXO apresentou grande
robustês em grandes intervalos de seus parâmetros.

Com isso, a partir desse ponto o CliXO parece ter se tornado uma espécie de
método "padrão ouro"na literatura do assunto, com todos os outros métodos propostos e
artigos que se utilizam de alguma hierarquia criada por dados empregando-o, mesmo assim,
devido a brevidade de ambos os métodos não existe, até onde o autor pode averiguar,
uma conclusão definitiva da academia sobre a CliXO ser de fato o melhor método e mais
pesquisas podem ser necessárias para elucidar a questão.
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4 CONCLUSÃO

Ontologias são extremamente importantes para o desenvolvimento das ciências
e em especial da biologia. No tangente, em específico, à biologia, desde a sua criação
a GO vem tomando papel central no que diz respeito a fonte anotações de genes e
planejamento de experimentos: ela representa uma sistematização do conhecimento que
se possui sobre o papel de cada um dos produtos gênicos nas mais diversas espécies e,
portanto, é fundamental para a integração da biologia.

Nesse contexto, o surgimento de métodos de inferência de ontologia através de
dados experimentais vem para solucionar alguns problemas da GO, como subjetividade
humana na sistematização do conhecimento e falta de rigor nas anotações (18). Entretanto,
para além desse escopo inicial, esses métodos podem levar a muito mais.

Com de uma maneira de extrair as relações hierarquicas intrínsecas dos dados,
pode-se estar diante de uma revolução na forma de se fazer biologia, saltando do uso de
ontologias para a análise de dados para a utilização de dados na criação e avaliação de
ontologias.

De fato, já foi sugerido na literatura uma maneira sistemática de integrar os dados
disponíveis sobre determinado sistema, de interações proteína-proteína, genéticas e de
coexpressão, para gerar conhecimento sobre a estrutura hierárquica do sistema, com a
possibilidade de depois encontrar o melhor experimento o possível para iterar sobre os
dados e progredir ainda mais no entendimento do sistema em questão. Tal abordagem foi
testada para o sistema de autofagia celular como prova de conceito e diversos novos papéis
de produtos gênicos foram confirmados e integrados na GO. (19)

Além disso, diversas outras iniciativas promissoras, baseadas ou inspiradas nesses
métodos, estão aparecendo na literatura, como um método semi-supervisionado proposto
para integrar sistematicamente a GO com dados experimentais(18) e um método que se
utiliza de aprendizado profundo com uma rede neural visível para modelar crescimento
celular a partir de dados da GO e da CliXO, servindo de base para a análise dos mecanismos
moleculares por trás das relações genótipo-fenótipo in silico. (8)

É digno de nota que os métodos aqui trabalhados a princípio não servem apenas
para extrair ontologias biológicas a partir de dados, são métodos fundamentais, os quais
podem ser utilizados nas mais diversas áreas do conhecimento.

Em suma, os métodos de busca por estruturas hierárquicas em redes de interação
biológicas são um método auxiliar de grande utilidade na construção da GO. Entretanto,
para além disso, eles podem acabar por revolucionar o jeito com que dados e experimentos
são enxergados dentro da biologia, sistematizando e acelerando o processo de elucidação
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dos diferentes sistemas celulares.
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