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RESUMO

HAAN, I. Ontologias Génicas Construidas por Redes de Interagao. 2021. 26p.
Monografia (Trabalho de Conclusao de Curso) - Nome da Unidade USP, Universidade de
Sao Paulo, Sao Carlos, 2021.

O presente trabalho busca fazer uma revisao da literatura no que tange a utilizacao de
métodos para extracao de ontologias no contexto da biologia a partir de redes de Dados.
O trabalho inclui progresssao historica, detalhamento dos métodos utilizados, resultado

comparativo sobre os métodos, o estado da arte e promessas para o futuro.

Palavras-chave: Ontologia. GO. Gene Ontology. NeXO. CliXO.
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1 INTRODUCAO

1.1 O que sao ontologias?

Para a filosofia, ontologias sao o estudo dos tipos de coisas que existem. Nao
obstante, ao longo do tempo, a palavra recebeu um segundo significado, mais ou menos
relacionado ao original. Ontologias, no sentido tratado nesse trabalho, derivado da area
de inteligéncia artificial, sao vocabularios destinados a representacao do conhecimento

disponivel sobre determinado assunto (1).
Guarino (1998) tenta trazer uma definigdo para esse novo uso da palavra:

"[...] ontologia se refere a um artefato constituido por um vocabulério usado para
descrever uma certa realidade, mais um conjunto de fatos explicitos e aceitos que dizem
respeito ao sentido pretendido para as palavras do vocabulario. Este conjunto de fatos tem
a forma da teoria da légica de primeira ordem, onde as palavras do vocabuldrio aparecem

como predicados unérios ou bindrios."(2)

Entretanto, essa definicdo, mesmo trazendo diversos aspectos realmente presentes
em ontologias, nao é consensual. Por conseguinte, para o correto entendimento da esséncia

do termo, faz-se necessario exemplificar e elencar caracteristicas comuns de ontologias. (3)

Os componentes basicos de uma ontologia sao classes (conceitos do dominio em
questao), juntamente com suas relagoes taxonomicas e propriedades. Quando adicionadas

instancias a essas classes cria-se uma base de conhecimento. (4)

Um exemplo concreto pode ser facilmente visualizado com uma ontologia hipotética
criada para representar o conhecimento disponivel sobre vinhos. Classes poderiam ser
branco, espumante, rosé, tinto, Cabernet Sauvignon, Chardonnay etc., as relagoes entre as
classes sao, por exemplo, Cabernet Sauvignon é um tipo de branco que, por sua vez é um

tipo de da superclasse vinho.

Jé& propriedades sao, por exemplo, produzido com uvas verdes e baira quantidade de
polifendis, caracteristicas da classe branco. Essas propriedades sao utilizadas, entao, para

instanciar exemplares, garrafas individuais de vinho, formando uma base de conhecimento.

Através dessa exemplificacdo fica claro o poder de um constructo como esse,
ontologias conseguem sistematizar, de maneira clara e eficiente, conhecimentos das mais
diversas areas; linguistica, ciéncias da computacao e biologia sao apenas alguns exemplos

dos muitos dominios que se utilizam desse conceito.



1.2 A GO

Com o advento do sequenciamento de genomas inteiros se fez necessaria uma
ontologia que captasse todo o conhecimento disponivel sobre os genes dos organismos. Tal
necessidade é nao apenas organizacional, como também fruto do desafio de comparar e

transferir anotagoes entre diferentes espécies. Para tal, em 2000 criou-se a Gene Ontology

(GO).(5)

A GO é, na realidade, um conjunto de trés ontologias distintas que contém termos
relacionados a processo biologico, componente celular e fungdo molecular. A primeira
carrega termos como DNA repair (reparo de DNA) e signal transduction (transdugao de
sinal). J4 a ontologia de componente celular traz classes como ribosome (ribossomo) e
mitochondrion (mitocondria). Por fim, a GO de fun¢ao molecular contém termos como
adenylate cyclase activity (atividade de adenilato ciclase) e transporter activity (atividade
de transporte).(5) (6)

O objetivo da iniciativa é produzir um vocabulario estruturado, bem definido e
comum para descrever os papéis dos genes e produtos génicos de diversos organismos.
Para esse fim, criou-se uma estrutura padrao que a GO deve respeitar. As ontologias sao
estruturadas como grafos aciclicos dirigidos (DAG, do inglés Directed Acyclic Graph), ou
seja, um grafo dirigido no qual, caminhando no sentido das ligagoes, é impossivel sair de
um vértice e voltar para ele fechando um ciclo. No grafo os termos sao respresentados por

nos e as relagoes entre eles como arestas.(5) (6)

Os termos presentes na GO (com excessao dos termos raiz) possuem uma relagao
de is a (é um) com alguma subclasse, por exemplo, glucose transport is a monosaccharide
transport (transporte de glicose é um transporte de agtcar). Porém, além dela, outras
relagoes sao frequentemente empregadas na ontologia, como part of (parte de), has part
(tem parte), regulates (regula), positively requlates (regula positivamente) e negatively

requlates (regula negativamente).(6)

Entretanto, o que comegou como um projeto destinado principalmente para fins
anotacionais hoje ja representa muito mais, ela é essencial, seja para um bidlogo realizando
trabalho de base em um aspecto especifico de um tnico organismo até para fisicos e
geneticistas que se propdoem a compreender polimorfismos genéticos humanos, além de
servir como padrao ouro para medir o sucesso de métodos de bioinformatica.(7) Além
disso, ela ja serve de base para iniciativas muito além do que o imaginado inicialmente,
como um modelo de aprendizado profundo capaz de modelar com precisao o crescimento
celular. (8)



1.3 A NeXO

Mesmo com a GO crescendo vertiginosamente em importancia, em meados de 2010
ela enfrentava sérios desafios relativos a anotagao. Nessa época, ela crescia vertiginosamente
também em tamanho e complexidade, ja apresentando mais de 30000 termos e 60000

relagoes entre termos, com genes anotados de mais de 80 espécies.(9) (10)

Além de problemas inatos da subjetividade humana na anotacao, os quais podem
ser parcialmente contornados com padroes estritos nessa tarefa, as ontologias encontravam
dificuldade em traduzir novas descobertas de dominio especifico para a relagdo de termos

da GO, produzindo viés em favor de termos mais bem estudados. (9) (10)

Tendo esses problemas em vista, imaginou-se que uma possivel solugao seria inferir
ontologias a partir de dados experimentais. A ideia era inferir uma hierarquia entre clusters

de redes de interagao que seja anédloga, em alguma escala, & GO.(10)

Em virtude de resultados iniciais que demonstravam maior densidade de interagao
génica presentes dentro de um mesmo termo da GO em quatro tipos de redes de interagoes,
sendo elas fisicas proteina-proteina, génicas (epitasia e letalidade sintética), co-expressao
génica e interagao funcional (YestNet), desenvolveu-se um método para montar ontologias
a partir de redes bioldgicas e ele foi batizado de Network Extracted Ontology (NeXO). (10)

O procedimento comeca com o emprego de um método probabilistico de deteccao
de comunidades originalmente desenvolvido para a predicao de relagoes ausentes em
uma rede. Tal método, explicado com maior detalhamento posteriormente, constréi uma
arvore binaria que maximiza as chances de recriacao de todas as redes de interacao
empregadas. Como elas presumidamente possuem padroes de interacao que refletem as
relagdes hierarquicas intrinsecas da células, espera-se que esse dendograma também o faca.
Entretanto, uma arvore binaria é apenas uma aproximagao das relagdes hierdrquicas entre

genes, nao possuindo a capacidade de refletir a real complexidade destas. (10) (11) (12)

O problema é que um dendograma impode a restricao artificial de que todos os
termos (com excessdao da raiz e nés terminais) possuam extamente dois termos mais
especificos abaixo dele e um mais geral acima, o que nao reflete a realidade celular, na qual
um processo pode ter mais de dois componentes envolvidos e um mesmo componente pode
participar de mais de um processo, realidade bem representada pela GO. Para transformar
essa primeira aproximacao em algo mais realista, procuram-se por novas ligacoes que
possam ser criadas na arvore binaria para aumentar a probabilidade de reconstrugao das
redes.(10)

Nesse estagio, cada termo da ontologia possui apenas uma anotacao numérica, a qual,
sem uma analise, nao significa nada. Para completar a ontologia os autores desenvolveram
um algoritmo de alinhamento de ontologias baseado em métodos derivados das ciéncias

congnitivas e da computagdo que faz o match entre termos baseado em semelhanga entre



instancias e posicionamento na hierarquia. Os objetivos dessa etapa sao trés: transferéncia
de termos presentes na GO, identificacao de termos nao presentes na GO (o que viria a ser
um dos mais importantes resultados conseguidos) e identificacdo de relagdes conflitantes

entre termos.(10)

Utilizando essa metodologia criou-se uma NeXO de levedura (Figura 1). Alinhando
ela com as ontologias da GO para a espécie, pode-se reconstruir 60% da ontologia de
componentes celulares e ao redor de 25% das outras duas, com termos que possuem bom
suporte nas redes apresentando melhor alinhamento, o que sugere que, com uma melhora
nos dados experimentais, é possivel melhorar a ontologia gerada, o que foi testado pelos

autores e confirmado. (10)
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Figura 1 — NeXO

Fonte: Estrutura retirada de http://nexontology.org/ e representada através do Cytoscape.

Dessa forma, a partir da NeXO pdde-se saltar do uso de ontologias para analise de



dados para a utilizacao de dados na criagao e avaliagao de ontologias. Um salto, ainda em

curso, que pode ter consequéncias profundas na forma de se fazer biologia.(7) (10) (13)

1.4 CliX0O

Motivados pelos resultados promissores da NeXO os autores consideraram diversos
métodos de clusterizacao hierarquica que poderiam ser utilizados para a reconstrucao
da GO e possivelmente trariam resultados melhores. Os principais pontos considerados
foram a possibilidade da utilizagado de valores discretos nas redes de interagao, uma vez
que na NeXO foram utilizados thresholds para a transformacao de redes ponderadas em
nao ponderadas, pela impossibilidade do uso das primeiras nesse método, o que resulta em
perda de informacao; e criagdo de DAGs com relagdes de parentesco multiplas permitidas

desde um primeiro momento, o que poderia gerar rela¢oes mais precisas.(13)

O tnico algoritmo encontrado pelos autores que realizaria a tarefa desejada é o
LocalFitness, esse método cria clusters em algum nivel da hierarquia por otimizacao de
uma funcao de fitness para cada um dos possiveis clusters sobrepostos contruidos a partir
de varios nos. A funcao fitness inclui um parametro que é ajustado para encontrar clusters
nos miultiplos niveis, as particoes do grafo que sao robustas, ou seja, estaveis em um

intervalo consideravel do parametro, sao utilizadas. (13)

Além do LocalFitness também foi apresentado um novo método, denominado
Clique Extracted Ontology (CliXO). O método, explicado em detalhes na secao 2.3 é
baseado no conceito de cliques, derivado da teoria de grafos. Além de atingir uma imensa
precisdao na reconstrugao da GO utilizando de similaridade semantica (> 98% de termos
identicamente alinhados) como prova de conceito, o método performa melhor que outros
algoritmos de clusterizacao e apresenta resultados similares aos da NeXO no que tange a
reconstrugao da GO através de redes de interagao. O método apresenta, ainda, uma forma

explicita de se lidar com o ruido, um dos problemas fundamentais da tarefa. (13)
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2 METODOS

2.1 Grafos

Um grafo é constituido por um conjunto de nés (ou vértices) e um conjunto de
conexoes (ou arestas). Um grafo é dito dirigido se suas conexdes apresentam direcionamento,
ou seja, podem ser percorridas em apenas um sentido e denominado nao dirigido se podem
ser percorridas nos dois. Um grafo dirigido é dito aciclico se, partindo de um né e
caminhando no sentido das ligagoes é impossivel voltar para o mesmo né, grafos dirigidos

aciclicos sao abreviados como DAG (Figura 2).(14)

. arc_sta alEt.a
vertice nio dirigida dirigida
(A) (B) (C)

Figura 2 — Exemplos de grafos: (A) um grafo nao dirigido; (B) um grafo dirigido; (¢) um
grafo dirigido aciclico

2.2 Construcao da NeXO

Como dito de antemao na se¢ao 1.3 o método para a construcao da NeXO baseia-se

em trés etapas, sao elas:

1. Criacao de uma &arvore binaria através de um método probabilistico de clusterizagio

hierarquica
2. Adicao de relagoes entre termos para permitir relagoes multiplas de parentesco
3. Alinhamento da ontologia gerada com a GO

2.2.1 Criacdo da Arvore Binaria

O método para a criagdo da arvore binaria possui uma grande complexidade,

tendo isso em vista, faz-se adequada uma primeira apresentacao dele em um analogo nao
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hierarquico. A explicacao aqui contida ¢é inspirada no artigo no qual a metodologia foi

proposta (12) e fundida com os detalhes particulares da NeXO (10).

2.2.1.1 Um modelo plano

Considera-se um grafo G, definido por um conjunto de vértices (V) e arestas (E, do
inglés edges). Um modelo plano M define como esses vértices se juntam em grupos, os quais
sao denotados [C, Cs, ..., Ck] para um modelo com K grupos, cada vértice é associado a
um e apenas um grupo, os quais sao, portanto, disjuntos. Indices i,j sdo utilizados para

grupos, enquanto u e v para vértices.

A contagem de arestas entre grupos e dentro de um mesmo grupo pode ser
contabilizada, respectivamente, por e;; = >-,ci vej Cuv € €ii = D ycpei Cuv, SeNdO €y, 1 para
um vértice entre u e v e 0 para a auséncia (presenga de um buraco). J& a contagem de
pares de vértices totais é, na mesma ordem, t;; = n;n; e t; = n;(n; — 1)/2, sendo n; o
nimero total de vértices no grupo i. Por conseguinte, a contagem de buracos entre i e j,

iguais ou diferentes, é h;; = t;; — e;;.

Para um dado par de grupos i e j, as arestas e;; sao modeladas a parir de ¢;; ensaios
de Bernoulli com parametro 6;;. A probabilidade das arestas observadas, condicionadas a

P() = 057 (1 = 0;5)" (2.1)

]

O valor de maior verossimilhanga (P Ly é obtido pela utilizacao da estimativa de
méaxima verossimilhanca de 6;;, = e;;/t;;, com uma probabilidade a priori (prior) uniforme.
Uma probabilidade verdadeiramente bayesiana (Plf BY ¢ obtida através do processo de
marginalizagao, marginalizando sobre o parametro 6;;, novamente com um prior uniforme

(15):

ML _  €ii1hii/ tij
P = e hyy’ [t (2.2)
PP = Beta(e;; + 1, hij + 1)

Dessa forma, para um modelo plano, com K (K +1)/2 pardmetros, a verossimilhanca

e probabilidade bayesiana sao(15):

L) =L Py
= (2.3)
P(M) =[] P

1<J
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2.2.1.2 Generalizacao Para um Modelo Hierarquico

Um grafo randémico hierdrquico (HRG, do inglés hierarchical random graph), é um
dendograma em que cada né tem uma probabilidade associada (p,), a qual corresponde
com a probabilidade de um vértice entre as suas subarvores filhas estarem ligados na
rede sendo representada. Esse modelo permite a recriagao de uma rede com propriedades
topoldgicas relacionadas a original, o que da margem para utilizar uma abordagem de

méaxima verossimilhanca para detectar a estrutura hierarquica. (11)

Essa abordagem pode ser utilizada para extender a no¢ao do modelo plano M
(subsegao 2.2.1.1) para um modelo hierdrquico T. Utilizando o mesmo modelo probabilistico
introduzido naquela se¢ao, define-se €. 2 € he1 2 como sendo, respectivamente, o nlimero
de arestas e buracos entre as subarvores c1 e ¢2 de um né. De maneira similar a Equacgao 2.3,
fazendo M =T, a verossimilhanca L(7T") de um dado modelo 7" e a probabilidade P(7") da

rede dado o modelo sdo:

LT)y= I Pis

cl,c2enés(T) (2 4)
PT)= I Pia

cl,c2enés(T)

Onde PY'L, = e gf}c:f/tiﬂg e P15, = Beta(ec ez + 1, here2 + 1). Sendo Beta a
fungdo de mesmo nome, pela definigio dela fica claro que a probabilidade P(M) da rede
dado o modelo é maximizada se as rela¢oes entre os nés de C1 e C2 forem coerentes, isso

é, forem predominantemente buracos ou arestas.

Para um conjunto de redes R a serem representadas por um tnico modelo T, P(T)
e R(T) sao dados pelo produto das probabilidades e verossimilhancas das r € R redes

individuais:

P(T) = ] P.(T)
reR (25)
L(T) = I] L.(T)
reR
Fazendo uma otimizac¢ao de maxima verossimilhanca sobre o conjunto de dados
a serem utilizados para a ciagao da ontologia, encontra-se uma arvore binaria, a qual é

utilizada para uma primeira representacao hierarquica da rede.

2.2.2 Generalizagao para relagoes multiplas de parentesco

Embora essa arvore bindria sirva para uma primeira representacao da rede, ela nao
da conta de toda a complexidade intrinseca da estrutura hierarquica dos genes (segao 1.3).

Dessa forma, modifica-se o0 modelo T para permitir relacoes de parentesco multiplas.
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Primeiramente, calcula-se o quanto cada né de T contribui para a pontuacao
geral do modelo, nés que nao contribuem sao removidos e seu n6 parental é conectado
diretamente a cada um de seus nés filhos. A contribuicdo de um né p é calculada pela
razao entre a probabilidade dos dados sob a arvore original e sob uma arvore atualizada,

na qual p é substituido por cada um de seus filhos (cl, ¢2, ..., cn):

K
M7
s=1 Pcl,spc2,s T Pcn,s

)\cl,c2,..,,cn (26)

Onde s representa cada um dos K nés irmaos de p e as probabilidades sao calculadas
como descrito anteriormente (Equacao 2.4). O né p é removido se tanto Aci e, cn < 1
como a densidade de interacao (D;; = e;;/t;;) entre cl, ¢2, ..., cn nao for maior que entre p

e seus irmaos. Com a remocao de nos, sao criadas relagoes de parentesco multiplo.

Além disso, a fim de permitir a existéncia de nés com mais de um né parental, é
montada uma heuristica. Comegando das folhas, consideram-se todos os pares de nés (c,p)
tais que o nimero de genes associados a ¢ € menor do que o de associados a p. O né p é

identificado como um parente adicional de ¢ se:

1. Os nos ¢ e p nao estao no mesmo caminho.

2. O padrao de interagoes entre os genes associados e a ¢ e associados a p ¢ denso

(pe/tpe > 0.3).

3. O conjunto de genes associados a p unidos com os associados a ¢ formam um cluster

denso (epuepuc/tpuepuc > %ep,p/ tpp)

2.2.3 Alinhamento de Ontologias

Como citado anteriormente (secao 1.3), até essa etapa os termos da NeXO sao
apenas tags, os quais s6 possuirao um real significado caso a estrutura hierdrquica seja
analisada. O alinhamento de ontologias permite nao apenas aproveitar a anotacao existente
da GO para essa tarefa como também comparar as ontologias e encontrar possiveis erros
na GO. A técnica de alinhamento utilizada para a confec¢do da NeXO ¢é inspirada por um

método denominado ASMOV34, criado para o alinhamento de ontologias semanticas. (16)

Dado duas ontologias, O1 com nl termos e 02 com n2 temos, um alinhamento de
ontologias A é um mapeamento de termos entre as ontologias de forma que cada termo em
01 é mapeado para no maximo um termo em 02 e vice-versa. O mapeamento entre termos
no alinhamento é avaliado usando uma func¢do pontuacao que considera a similaridade
dos conjuntos de genes associados aos termos (similaridade intrinseca entre termos) e a

posicao relativa dos termos na hierarquia (similaridade relacional).
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O alinhamento é um processo iterativo, com cada iteracdo k produzindo um
alinhamento Ay. O processo comega com o célculo de uma matriz T}, de dimensoes nl X n2,
onde 0 < Ty(i,7) < 1 representa a similaridade do termo i € O1 com j € O2. T, é

contabilizado da seguinte maneira:

I(i,7),para k=0

0.751(i,7) + 0.25Ry(i,7), para k > 0

(2.7)

Onde (7, j), a similaridade intrinseca, é precomputada, uma vez que nao depende

de k, e é dada pelo Indice Jaccard:

(L’iﬂl'j

1(i, j)

2.8
J& R(i, ), a similaridade relacional, é calculada pela semelhanga entre os conjuntos

de termos que sao parentes de i e j (P, P;) e entre os que sao filhos dos mesmos (C;, C;):

S(P;, P;) + S(C;, C; .
( i) + 5 ) , para nés internos

S(C;, C;), para raiz

Onde as similaridades (s) entre conjuntos sao calculadas utilizando Aj_; da seguinte

forma:

S0
X, Y) =

SY) = v = s0s 210,
SOS= 3 Tialey)

(z,y)EL

L é o alinhamento local de X com Y, determinado pela escolha de pares (z,y) com
o maior Tj_1, assegurando-se que nenhum elemento de X ou Y participe em mais de um
par. Tendo em vista o que foi apresentado nessa secao, o alinhamento A, é encontrado

através do seguinte algoritmo miope:

1. Inicializar o Ay sem correspondéncia entre termos; Calcular Ty; inicializar L como

uma lista ordenada de pares de termos (i,j) em ordem decrescente de T} (i, )
2. Selecionar o primeiro par (i,7) de L

3. Confirmar se (i, 7) conflita com algum dos pares ja contidos em Ay. Dois pares, (i,j)

e (i,j’), conflitam se:

-/

(a) i=i'Vj=
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(b) ((¢ é descendente de ") A (j é ancestral de j'))V
((i é ancestral de i') A (j é descendente de j'))

4. Se nao houver conflito, adicionar (i,j) a Ay

5. Se todos os termos de O1 ou O2 estiverem mapeados, ou se todos os pares tiverem
uma similaridade abaixo de um valor limite (definido como 0.01), entdo Ay estd

completo. Sendo, retornar para o passo 2.

6. Se A, = A;,i € (0, ..., k), terminar, caso contrario, reiniciar para a préxima iteragao
(k=k+1)

Com o fim do algoritmo, a pontuagao (Sk(t)) de cada um dos termos alinhados é

calculada como:

Ty (t, Ax(t)), para termos mapeados por Ay

Si(t) = { (2.11)

0, para termos nao mapeados por Ay

A taxa de alinhamentos falsos é calculada como:

FoR) - EZ ) 212

Onde Npg, é o nimero de termos em um alinnhamento feito por permutacao
randomica que possuem uma pontuacao de alinhamento > t. Um limiar de pontuagao de
alinhamento minima para o mesmo valer ¢ 0.1 e a mesma ¢é reduzida com o tamanho dos

grupos de forma a manter FFDR < 10% para todos os tamanhos de grupos.

2.3 Construcao da CliXO
2.3.1 Cliques

A construcao da CliXO é baseada em um conceito da teoria de grafos denominado
clique. Um clique de um grafo nao orientado U é definido como um subconjunto de seus
vértices em que todos os pares estao conectados entre si. Um clique é dito maximal quando
é impossivel adicionar outro vértice e encontrar um clique maior, ou seja, o clique maximal

nao é subconjunto de nenhum outro clique.

2.3.2  Definicoes

A metodologia e explicagao sobre ela foram baseadas no artigo em que a CliXO foi

apresentada (13).

Define-se o grafo que representa a ontologia como um DAG ponderado G =

[T, N, E,w,r] com as seguintes propriedades:
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1. G tem dois tipos de nés, terminais (7'; sem nés filhos) e ndo terminais (N), os quais
também sao denominados termos. G' tem uma tnica raiz (r), a partir da qual todos

os n6s podem ser alcangados.
2. |G| := ntmero de nés em N

3. Entre qualquer par de nés (a,b) € T', w(a, b) denota o menor caminho entre a e b

em G.

4. Propriedade Ultramétrica: um n6 u € N tem distancia constante (w(u)) para

todos os seus descendentes terminais (L(u)).

5. Propriedade de Testemunha: para um né v € N, e um n6 v(€ TA ¢ L(u)),
b € L(u)|w(a,b) > 2w(u).

6. V(a,b) € T3 um menor ancestral comum (lca(a, b)) |(w(a,b) = 2w(lca(a,b)))

2.3.3 Formalizacao do problema

Para otimizar-se a resolu¢ao de um problema, faz-se 1til primeiro entender com
detalhes do que se trata o problema a ser resolvido. Com a seguinte formalizacao, o

entendimento sobre o algoritmo e sua motivacao é facilitada.

2.3.3.1 Caso Perfeito

Entrada - Um conjunto de nés terminais T e uma matriz M de distancia entre os
pares de nds, (uma matriz similaridade pode ser convertida para uma distancia fazendo

M =constante - Msimilaridade)
Saida - G, com T como o conjunto de nés terminais e V(a,b) € T, w(a,b) = M(a,b)

Como raramente as distancias de entrada satisfazem as distancias da ontologia

perfeitamente, no caso imperfeito calcula-se a ontologia que melhor representa M

2.3.3.2 Caso imperfeito

Entrada - Um conjunto de nés terminais T, uma matriz M de distancia entre os

pares de nés e um parametro de ruido « fornecido pelo usuario.

Saida - G, com T como o conjunto de nés terminais que maximiza |G| enquanto

satifaz as seguintes condigoes:

1. Y(a,b) € T,w(a,b) > M(a,b)
2. Yu € N,Va(e TA ¢ L(u)),3b € L(u)|(M(a,b) > 2w(u) + «)
3. Yu € N,3(a,b) € L(u)]2w(u) + a < w(v), Vv com (a,b) € L(v),v # u

4. Yu € N, (a,b) € L(u), w(u) = 2maz(M(a,b))
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2.3.4 O Algoritmo CliXO
2.3.4.1 Caso perfeito

Considera-se um grafo U nao dirigido, com nés € T e sem arestas. Sendo S o
ordenamento de todos os pares de nés (a,b) em ordem decrescente de distancia (M(a,b)),

encontra-se a ontologia pela seguinte heuristica:

Input :Ordenamento dos pares de nés (5)
Output : Nés nao terminais de G (Cg)
Co 1}
while S # {} do
(a,b) < S[0]
t < M(a,b)
while M(a,b) =t do
(a,b) < Pop(S)
Adicionar aresta (a,b) a U
end
Ceyr < conjunto de cliques maximais em U
Co + (CyU Ceyr)
end

A cada saida, os cliques maximais entre os nds terminais correspondem a um noé

sendo criado no grafo da ontologia, gerando a hierarquia. (Figura 3,Figura 4)

0.75 0.25

0.0
0.0
0.0
0.0
0.5
0.6

Figura 3 — Exemplo de matriz de distancias

2.3.4.2 Caso imperfeito

No caso imperfeito a tinica mudancga no algoritmo é, ao invés de adicionar todos os
cliques de C.,, para Cy a cada vez que um novo valor de threshold é atingido, adiciona-se

a Cg apenas cliques C' € Cy,, para os quais maz,pec(M(a,b)) <t — a.

O algorimo, construido dessa maneira, consegue distinguir perfeitamente entre
sinal e ruido quando o < s A @ > n(G), sendo s a menor distdncia entre qualquer par

de nés conectados na ontologia e n(g) determinado pelo seguinte procedimento. Para
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threshold=1 1=0.75 =0.6

.. .. .'. \ \
t o h .\. ®
200000006 &....& &M

t=0.5 t=0.25

Figura 4 — Exemplo de construcao da hierarquia pelo método CliXO a partir da matriz
da Figura 3; acima as iteracoes de U e abaixo as itera¢oes da hierarquia

Fonte: Elaborado pelo autor a partir do NetworkX.

cada termo u € G, ordena-se pelo valor todos os M (a,b), onde a,b € u, n(u), para um
noé nao terminal u € N, é a diferenga maxima entre valores adjacentes na lista, por fim,

n(G) = mazyenn(u).

Nao é possivel determinar n(G) sem saber a verdadeira estrutura da ontologia,
entretanto é um conceito util para entender o papel de a. n(G) pode ser estimado, contudo,

como 2x o erro padrao das distancias medidas e a pode ser estimado com esse valor.

Nem sempre é possivel definir « de tal forma que n(G) < a < s, porque as vezes
n(G) > s. Nesse caso, se a < n(G), criar-se-4 termos estranhos que sdo um subconjunto
de termos reais’. Por outro lado, se a@ > s, entdao qualquer né filho que for préximo a seu
noé parental (2(w(p) —w(c)) < a)) nado serd incluido na ontologia. Uma estratégia para
definir o valor de o de maneira satisfatéria é analisar uma parte conhecida da ontologia, se
muitos termos estranhos estao sendo criados, entao provavelmente « esta baixo, se varios

termos estao colapsados, entao « esta alto.
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2.3.4.3 Falsos negativos

Em dados experimentais conexoes faltando (medigdes em que M(a,b) << w(a,b)
na ontologia 'real’) sdo uma realidade. Para cada falso negativo em um termo de tamanho
k, dois termos de tamanho k-1 sdo criados na ontologia gerada para CliXO. Essa realidade

gera uma ontologia a qual possui muito mais termos do que a 'real’.

Para se contornar isso, desenvolve-se um método em que um parametro definido
pelo usuario 0 < f < 1 dita como a matriz M deve ser editada para corrigir falsos

negativos. Dois cliques C; e C; sao considerados altamente sobrepostos pelo algoritmo se

a)N(C;UC;
VQGCiUCj,WZB.

Modifica-se o algoritmo CliXO, de forma a, antes de um clique maximal C; €
Ceyr ser adicionado a Cg, averiguar-se todos os outros C; € C, em busca de alta
sobreposicao com Cj. Para qualquer C; altamente sobreposto com Cj, procura-se outro
Cj € Ceur que seja altamente sobreposto com C;. Para todos os pares de cliques C;, Cj,
M(a,b) < max(w(Ci),w(C;)) para todos os (a,b) € (C; U C;). Adiciona-se entao as

conexoes ajustadas em U e atualiza-se C,,,.

2.3.4.4 Alinhamento de Ontologias

Assim como na NeXO a ontologia precisa ser alinhada com a GO. Isso é feito pela

mesma metodologia(subsecao 2.2.3).
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3 RESULTADOS E DISCUSSAO

No artigo em que a CliXO foi proposta, os autores, utilizando similaridade semantica
de Resnik (17) extraida da GO de processo biologico (GO BP), geraram ontologias a partir
de diferentes métodos, e averiguaram o quanto elas foram capazes de reconstruir da GO.
A CliXO reconstruiu > 98% dos termos da GO BP identicamente e 100% dos termos
construidos foram alinhados. J& o algoritmo de Local Fitness alinhou-se a 5% dos termos e
obteve 30% de alinhamento nos termos criados. Os métodos hierdrquicos testados (single
linkage, complete linkage, ward, UPGMA e WPGMA) reconstroem 35-80% dos termos
da GO ( 20% de reconstrucao de termos identicos), entretanto os mesmos sao forgados,
por construgao, a criar uma arvore bindria, danificando sua precisao (<35%). Por fim, o
método NeXO foi utilizado para reconstrucao da GO BP com o emprego de thresholds, o

mesmo reconstruiu 40% da Ontologia e obteve precisao de 70% nos termos gerados. (13)

No intuito de avalia-los no que tange a reconstrucao da GO a partir de dados,
os autores submeteram diferentes métodos aos mesmos bancos de dados de levedura
(interagoes génicas, perfil de expressoes génicas e YeastNet v3). Através dos resultados, os
autores concluiram que os métodos NeXO e CliXO possuem uma clara vantagem sobre os
outros, apresentando resultados similares quando com parametros otimizados. Todavia, o
método NeXO demonstrou ser muito mais sensivel a parametros, com pequenas variagoes
da threshold provocando grandes perdas, enquanto o método CliXO apresentou grande

robustés em grandes intervalos de seus parametros.

Com isso, a partir desse ponto o CliXO parece ter se tornado uma espécie de
método "padrao ouro'na literatura do assunto, com todos os outros métodos propostos e
artigos que se utilizam de alguma hierarquia criada por dados empregando-o, mesmo assim,
devido a brevidade de ambos os métodos nao existe, até onde o autor pode averiguar,
uma conclusao definitiva da academia sobre a CliXO ser de fato o melhor método e mais

pesquisas podem ser necessarias para elucidar a questao.
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4 CONCLUSAO

Ontologias sdo extremamente importantes para o desenvolvimento das ciéncias
e em especial da biologia. No tangente, em especifico, a biologia, desde a sua criacao
a GO vem tomando papel central no que diz respeito a fonte anotagoes de genes e
planejamento de experimentos: ela representa uma sistematizacao do conhecimento que
se possui sobre o papel de cada um dos produtos génicos nas mais diversas espécies e,

portanto, ¢ fundamental para a integracdao da biologia.

Nesse contexto, o surgimento de métodos de inferéncia de ontologia através de
dados experimentais vem para solucionar alguns problemas da GO, como subjetividade
humana na sistematizacao do conhecimento e falta de rigor nas anotagoes (18). Entretanto,

para além desse escopo inicial, esses métodos podem levar a muito mais.

Com de uma maneira de extrair as relagoes hierarquicas intrinsecas dos dados,
pode-se estar diante de uma revolucao na forma de se fazer biologia, saltando do uso de
ontologias para a analise de dados para a utilizacao de dados na criacao e avaliagao de

ontologias.

De fato, ja foi sugerido na literatura uma maneira sistematica de integrar os dados
disponiveis sobre determinado sistema, de interagoes proteina-proteina, genéticas e de
coexpressao, para gerar conhecimento sobre a estrutura hieradrquica do sistema, com a
possibilidade de depois encontrar o melhor experimento o possivel para iterar sobre os
dados e progredir ainda mais no entendimento do sistema em questao. Tal abordagem foi
testada para o sistema de autofagia celular como prova de conceito e diversos novos papéis

de produtos génicos foram confirmados e integrados na GO. (19)

Além disso, diversas outras iniciativas promissoras, baseadas ou inspiradas nesses
métodos, estao aparecendo na literatura, como um método semi-supervisionado proposto
para integrar sistematicamente a GO com dados experimentais(18) e um método que se
utiliza de aprendizado profundo com uma rede neural visivel para modelar crescimento
celular a partir de dados da GO e da CliXO, servindo de base para a analise dos mecanismos

moleculares por tras das relagoes gendtipo-fenétipo in silico. (8)

E digno de nota que os métodos aqui trabalhados a principio nao servem apenas
para extrair ontologias biologicas a partir de dados, sao métodos fundamentais, os quais

podem ser utilizados nas mais diversas areas do conhecimento.

Em suma, os métodos de busca por estruturas hierdrquicas em redes de interagao
biolégicas sao um método auxiliar de grande utilidade na construcao da GO. Entretanto,
para além disso, eles podem acabar por revolucionar o jeito com que dados e experimentos

sao enxergados dentro da biologia, sistematizando e acelerando o processo de elucidacao
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dos diferentes sistemas celulares.
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